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ABSTRACT 
 
In the present paper we present an analytical description of the powered swing-by maneuver in the 
three-dimensional space. Analytical equations are derived, based in the patched conics approximation 
and in the fact that the impulse applied is small compared to the velocity of the spacecraft, in order to 
calculate the variation in velocity, angular momentum, energy and inclination of the spacecraft during 
the maneuver. A study is also executed to investigate in which cases the impulse is more efficient 
when applied during or after the point of maximum approach. Finally, those same maneuvers are 
computed with the dynamics given by the restricted problem of three bodies and the results are 
compared with those obtained via the “patched-conics” approximation. 
 

INTRODUCTION 
 

The swing-by maneuver is a very popular technique used to decrease fuel expenditure in space 
missions. The literature shows many applications of the swing-by technique to different dynamical 
systems. The first dates from the sixties, when Flandro (1966) made the first studies for the (then) 
future Voyager mission, although it was only during the eighties that swing-by was acknowledged as a 
powerful tool for mission planning. In that decade, Farquhar & Dunham (1981) formulated a mission 
to study the Earth’s geomagnetic tail, Byrnes and D'Amario (1982) designed a mission to flyby the 
comet Halley, while D'Amario et al. (1981, 1982), Marsh & Howell (1988) and Dunham & Davis 
(1985) studied multiple flyby for interplanetary missions. Additional studies during this time include 
mission planning for the ISEE-3/ICE, performed independently by Farquhar et al. (1985), Efron et al. 
(1985) and Muhonen et al. (1985).  
 During the next decade, swing-by was widely used in missions to the planets. As examples, 
Striepe & Braun (1991) used a swing-by in Venus to reach Mars, Swenson (1992) proposed a mission 
to Neptune using swing-by to gain energy due to close approaches to the inner planets, and Weinstein 
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(1992) made a similar study for a mission to Pluto. Also at this time, the mathematical construction of 
the swing-by mode was improved by including additional effects. In this sense, Prado & Broucke 
(1994) studied the effects of the atmosphere in a swing-by trajectory, Prado (1996) considered the 
possibility of applying an impulse during the passage by the periapsis and, more recently, Felipe & 
Prado (1999) studied numerically a swing-by in three dimensions. The most usual approach to study 
this problem is to divide the problem in three phases, each dominated by a two-body problem. This is 
the so-called “patched-conics” approximation. Other models used to study swing-by include the 
circular restricted three-body problem (used in Broucke (1988), Broucke & Prado (1993) and Prado 
(1993), and the elliptic restricted three-body problem (Prado, 1997). 

The goal of this paper is to develop analytical equations for the variations of velocity, energy, 
angular momentum and inclination for a spacecraft that passes close to a celestial body and receives a 
small impulse when passing by the periapsis. This passage, called swing-by, is assumed to be 
performed around the secondary body of the system. Among the several sets of initial conditions that 
can be used to identify uniquely a swing-by trajectory, the following five variables are used in the 
present paper: Vp, the velocity of the spacecraft at periapsis of the orbit around the secondary body; 
two angles (α and β), that specify the direction of the periapsis of the trajectory of the spacecraft 
around M2 in a three-dimensional space; rp, the distance from the spacecraft to the center of M2 in the 
moment of the closest approach to M2 (periapsis distance); γ, the angle between the velocity vector at 
periapsis and the intersection between the horizontal plane that passes by the periapsis and the plane 
perpendicular to the periapsis that holds pV

r
. Fig. 1 shows the sequence for this maneuver.  

It is assumed that the system has three bodies: a primary (M1) and a secondary (M2) bodies with 
finite masses that are in circular orbits around their common center of mass and a third body with 
negligible mass (the spacecraft) that has its motion governed by the two other bodies. The spacecraft 
leaves the point A, passes by the point P (the periapsis of the trajectory of the spacecraft in its orbit 
around M2) and goes to the point B. When passing by the point P the space vehicle receives a small 
impulse ( V

r
δ ). The points A and B are chosen in such a way that the influence of M2 at those two 

points can be neglected and, consequently, the energy can be assumed to remain constant after B and 
before A (the system follows the two-body problem). The initial conditions are clearly identified in the 
Fig.1. The distance rp is not to scale, to make the figure easier to understand. The result of this 
maneuver is a change in velocity, energy, angular momentum and inclination in the Keplerian orbit of 
the spacecraft around the central body.  
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Fig. 1 – The powered Swing-By in Three Dimensions. 
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ANALYTICAL EQUATIONS FOR THE SWING-BY IN THREE DIMENSIONS 
 

First, let us assume that the impulse has not been applied to obtain an expression for −
∞V
r

 and 
+
∞pV
r

, where +
∞pV
r

 denotes the pseudo velocity of the spacecraft with respect to M2 after the swing-by, 
that represents the velocity that the spacecraft would have with respect to M2 if the impulse was not 
applied. The position and velocity at periapsis, +

∞pV
r

 and −
∞V
r

are (Prado, 2000): 
 

αβ= coscosrx pi           (1) 
αβ= sincosry pi           (2) 

β= sinrz pi            (3) 
 sin cos  v- cos sin sin vV ppxiB αγαβγ−=        (4) 
 sin cos  v sin sin sin vV ppyiB αγ+αβγ−=        (5) 

 sin cos vV pziB γβ+=           (6) 

)sin cos ,cos cos sin sin sin-         
 ,sin cos cos sin sin( cosV  )sin ,sin cos ,cos (cos sinVV

γβαγ+αβγ
αγ−αβγ−δ+βαβαβδ= ∞∞

−
∞

r

 (7) 

)sin cos ,cos cos sin sin sin-         

 ,sin cos cos sin sin( cosV  )sin ,sin cos ,cos (cos sinVV p

γβαγ+αβγ

αγ−αβγ−δ+βαβαβδ−= ∞∞
+
∞

r

 (8) 

 
If we apply the impulse (Fig. 1), the position of the spacecraft remains unchanged, but the velocity 
components contain and additional term given by:  

 
xppxi V  sin cos  v- cos sin sin vV δ+αγαβγ−=       (9) 

yppyi V  sin cos  v sin sin sin vV δ+αγ+αβγ−=       (10) 

zpzi V  sin cos vV δ+γβ+=          (11) 
 
For small impulses it is possible to assume that the vectors pr

r  and pV
r

 will remain close to the position 
and velocity of the perigee. We also assume that the two-body problem is a valid approximation, and 
the whole maneuver takes place in the plane defined by the vectors pr

r  and pV
r

. Thus, the vectors −
∞pV
r

 
and +

∞V
r

 can be written as a linear combination of the versors associated with pr
r  and pV

r
. Recall that 

−
∞pV
r

 is the velocity of the spacecraft when arriving at the sphere of influence of M2, coming from a 
hyphotetical trajectory that leads to a velocity at periapsis given by Eq. (9)-(11), and +

∞V
r

 is the velocity 
vector after the swing-by, both with respect to M2. Using ∞V

r
 to represent both −

∞pV
r

 and +
∞V
r

, since the 

conditions are the same for both vectors and a double solution will give the values for −
∞pV
r

 and +
∞V
r

, we 
have: 

p

p

p

p

V
V

B
r
r

AV
rr

r
+=∞           (12) 
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Explicitly, this can be written as: 
 

)sincos,coscossinsinsin,        
sincoscossinsin()sin,sincos,cos(cos

zyx VVV
BAV

δγβδαγαβγδ
αγαβγβαβαβ

+++
+−−+=∞

r

       (13) 

 
where A, B are constants satisfying the relation A2 + B2 = 2V∞ , and ∞V  can be obtained from the 

conservation of energy of the two-body problem:
p

2
p

2

r
2VV µ

−=∞ . Recall that µ = ( )212 mmm + , where 

m1 and m2 are the real masses of M1 and M2, respectively. A second requirement for ∞V
r

 is that it 
makes an angle δ  with pV

r
, where δ  is half of the total rotation angle described by the velocity vector 

during the maneuver (angle between −
∞V
r

 and +
∞V
r

) and it is assumed equal to the maneuver without 
impulse. This condition can be written as: 
 

δ=• ∞∞ cosVVVV pp

rr
         (14) 

 
where the dot represents the scalar product between two vectors. From the two-body problem it is 
known that: 
 

2

2
p Vr

1

1sin

µ
+

=δ
∞

          (15) 

 
where µ2 is the gravitational parameter of M2 (equal to 0.0121 in the case of the Moon). Using the 
equation for ∞V

r
 as a function of pr

r  and pV
r

, we also have: 
 

δ==•









+=• ∞∞ cosVVBVV

V
V

B
r
r

AVV ppp
p

p

p

p
p

r
rr

rr
     (16) 

 
Thus, δ= ∞ cosVB , because pp Vr

rr
•  = 0 (at the periapsis pr

r  and pV
r

 are perpendicular) and 
2
ppp VVV =•

rr
. Consequently, since A2 + B2 = 2V∞  we have 

 
A2 = 2V∞ -B2 = 2V∞  - 2V∞ cos2 δ  = 2V∞ (1-cos2 δ ) = 2V∞ sin2 δ   

 
which implies:  A = δ± ∞sinV  
 
From those conditions, we have: 
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}V)sin sin  )sin cos V((cos

,V)sin sin cos )sin sin sin-cos cosV( (cos

,V)sin cos cos  )sin sin cos - sin cos-V( {(cosV

z

y

xp

∞

∞

∞
−
∞

δβ−γβ+δδ

δαβ−γβαγα+δδ

δβα−γβααγδδ−=
r

   (17) 

 

}V)sin sin  )sin cos V((cos

,V)sin sin cos )sin sin sin-cos cosV( (cos
,V)sin cos cos  )sin sin cos - sin cos-V( {cosV

z

y

x

∞

∞

∞
+
∞

δβ−γβ+δδ

δαβ−γβαγα+δδ
δβα−γβααγδδ=

r

   (18) 

 
For M2, its velocity with respect to an inertial frame ( 2V

r
) is assumed to be: 

 
)0,V,0(V 22 =

r
          (19) 

 
By using vector addition: 
 

}sin sin  sin cos cos,sin cos sin sin (-cos sincos cos (cos
V
V

)),sin cos- sin sin (cos cos  sin cos (cos{VVV

2

2i

δβ+γδβδβ+γβδα+γαδ+

δβγβδα+αγδ−=+=

−
∞

−
∞

rrr

 (20) 

 

}sin sin  )sin  cos(

cos,sin sin cos- )sin sin sin-cos cosV( cos
V

,sin cos cos - )sin sin cos - sin cos-V( {cos

y
2

x20

δβγβδ

δδαβγβαγαδδ

δβαγβααγδδ

−+

++

=+=

−
∞

+
∞

zV

V
VVV
rrr

    (21) 

   
where iV

r
 and 0V

r
 are the velocity of the spacecraft with respect to the inertial frame before and after 

the swing-by, respectively.  
From those equations, it is possible to obtain expressions for the variations in velocity, energy and 

angular momentum. They are: 
 

i0 VVV
rrr

−=∆  

)VV(
2
1E 2

i
2
0

rr
−=∆           (22) 

 
which implies that: 
 

22

22222

)sin 4sin )sin

sin cos cos cos( cos4cos)((

∞+

++−++=∆

VV

VVVVVV

z

yxzyx

δδβδ

αβδβαδδδδδδ
    (23) 
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)V)sin )sinVsin cosVcos cosV(2

)sin sin sinV2sin sin cosV2sin cosV2in cosV2-

cos cosV2VVV( (cos cos

)sin sin cos2cos(2(V 
2
1

zyx

yxzx

y
2
z

2
y

2
x

2

∞

∞

++−

−−+

+++

+−=∆

δβδαβδβαδ

γβαδγβαδγβδαγδ

γαδδδδδδ

δαβδδ

s

VVE y

  (24) 

 
Similarly, for the angular momentum ( C

r
) the results are: 

 

)}V ))sin cos V sin sin  cos( sinV cos cos cos((V d
 ,)Vsin sinsin cos (cos  ,0{

 2 ∞∞∞

∞

+−++
+−=×=

δβγβδαδγα
δβγδβdVRC ii

rrr

       (25) 

 

)})Vsin sin cos ) sin sin sin cos cos V( cos((V d
 ,)Vsin sin)sin cosV ((cos  ,0{

y 2

z00

∞

∞

−−++
−+−=×=

δαβγβαγαδδ
δβγβδδdVRC

rrr

        (26) 

 
where )0,0,d(R =

r
 is the position vector of M2. Then: 

 
}V sin sin cos  2 cosV d ,V sin sin d 2V cosV d- ,0{ y z0 ∞∞∞∞ −+=−=∆ δαβδδδβδδ dVCCC i

rrr
 

(27) 
 
So, its modulus can be expressed by 
 

CC ∆=∆
r

2
z

2
y )V sin sin d 2V cos V d()V sin sin cos d 2VcosV d( ∞∞∞∞ δβ−δδ+δαβ−δδ=       

            (28) 
 

Using the definition of angular velocity 
d

V2=ω  for the inclination, the results are the following:  

 
{ }1 ,0 ,0=ω

r  
 

)V ))sin cos  sin sin  (-cos sin  cos cos osc((V dCC 2ziiz ∞δβ+γβδα+δγα+=ω⋅=
rrr

  (29) 
 

))V sin sin cos ) sin sin sin  cos oscV ( (cos(V dCC y2z0z0 ∞δαβ−γβα−γα+δδ+=ω⋅=
rrr

 (30) 
 

)sin sin cos 2 cosV(V dCCC yizz0z δαβ−δδ=−=∆ ∞

rrr
     (31) 

 

2
2

22

ii )))Vsin cos  sin sin (-cos sin cos cos (cosV(
d)V sin sin dV sin cos cos d(

CC
∞

∞∞

δβ+γβδα+δγα+

+δβ+γδβ
=∆=∆

r
 (32) 
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)V )sin sin cos - )sin sin sin - cos cosV( (cosV(

V )sin sin - )sin cosV( ((cosd
CC

2
y2

22
z

2

00
∞

∞

δαβγβαγα+δδ+

+δβγβ+δδ
=∆=∆

r
 (33) 

 

i

iz
i

C

C
)i(Cos r=             

2
2

22
2

i )))Vsen cossen sen (-cos sencos cos (cosV(d)V sen sen dV sen cos cosd(
))))Vsen cossen sen (-cos sencos cos cos V( d)i(Cos

∞∞∞

∞

δβ+γβδα+δγα++δβ+γδβ
δβ+γβδα+δγα+

=  (34) 

 

0

z0
0

C

C
)i(Cos r=             

2)
y2

22
z

y2
0 ))Vsen sen cos-)sen sen sen-cos cosV( (cosV(V )sen sen-)sen cosV( ((cos d

)Vsen sen cos -)sen sen sen-cos cosV( (cosV
)i(Cos

∞∞

∞

δαβγβαγα+δδ++δβγβ+δδ

δαβγβαγα+δδ+
=

  (35) 

 
The variation in inclination ∆i can then be obtained from i0-ii 

 

( )















δαβ+γβαδδγα++δβ+γδβ

δαβ+γβαδδγα+
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δαβγβαγα+δδ++δβγβ+δδ

δαβγβαγα+δδ+
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∞∞∞

∞

∞∞

∞

2
2

22
2

2
y2

22
z

2

y2
i

)))Vsin sin cossin sin sin cos-cos cos (cosV(d)V sin sin dV sin cos cosd(
)))Vsin sincossin sinsin cos- cos cos cos V( darccos

)))Vsin sin cos-)sin sin sin-cos cosV( (cosV(V )sin sin-)sin cosV( ((cos d

)Vsin sin cos -)sin sin sin-cos cosV( (cosVd
arccos

            (36) 
 

where ( ) ( ) ( )22
y

2
xz VVVV

r
δ+δ−δ−=δ  and V

r
δ  is the magnitude of the impulse applied in 

maneuver. 
 

RESULTS 
 

            The following figures are ploted with different values and directions of angles to obtain ∆E, 
∆C, ∆V as a function of the direction of an impulse with fixed magnitude. Figure 2 show the results 
obtained. The values attributed the variables are: µ = 0.0121, V2 = 1.0, V

r
δ = 0.01, ∞V

r
 = 2.0, d =1.0. 

The figures show results with practical applications for missions, since it is possible to obtain the 
values of ∆E, ∆C, ∆V as a function of the direction of a impulse with fixed magnitude. Most of the 
extrema are located in the borders, although exceptions exist which indicate the existence of directions 
more efficient to apply the impulse.  

Several similar graphs, built with other values of angles, are not shown here due to page limits. 
The comparisons in the variation of Energy between the maneuver standard swing-by and the 
propelled maneuver are show in Table 1.   
 

CONCLUSIONS 
 

 We obtained analytic equations for the variation of velocity, energy, angular momentum and 
inclination for a propelled swing-by maneuver, for the particular case where the impulse is small. The 
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propelled swing-by has values of the variation in Energy larger than the standard swing-by, what 
shows the pratical importance of this maneuver. The variations are closer to linear in the variables δVx 
and δVy. In most of the cases the more effecient maneuver is obtained when the impulse is aligned 
with “x”or “y”axis. So, the present research can show the best direction to apply the impulse for any 
desired criteria: maximum or minimum variation of energy or velocity or angular momentum or 
inclination. 
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Table 1. Maxima values of the variation of Energy. 
 

 
α = -135º, β = -45º, γ = -45º   

 

angle standard swing by  
∆E max 

propelled swing by 
∆E max 

α = -135º, β = -45º, γ = -45º 0.756453 0.75305 
α = -90º, β = 45º, γ = -180º 1.06972 1.06288 
α = 45º, β = -90º, γ = 180º -0.0000409975 0.0164884 

α = 0º, β = 0º, γ = 0º 0 0.00545071 
α = 30º, β = 0º, γ = 0º -0.756378 -0.752087 
α = 60º, β = 0º, γ = 0º -1.3101 -1.30757 
α = 90º, β = 0º, γ = 0º -1.51279 -1.51217 
α = 120º, β = 0º, γ = 0º -1.31015 -1.30998 
α = 150º, β = 0º, γ = 0º -0.756479 -0.756307 
α = 180º, β = 0º, γ = 0º -0.000115961 0.0014556 
α = 210º, β = 0º, γ = 0º 0.756278 0.759376 
α = 240º, β = 0º, γ = 0º 1.31004 1.31523 
α = 270º, β = 0º, γ = 0º 1.51279 1.51964 
α = 300º, β = 0º, γ = 0º 1.31021 1.31743 
α = 330º, β = 0º, γ = 0º 0.756579 0.762772 
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α = -90º, β = 45º, γ = -180º   

Fig.2 - Results of the numerical simulations. 
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